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I. INTRODUCTION

Let X be a normed linear space with norm Ii il. For a positive integer N,
the N-width of a set B in X is defined by

dN(B) = inf sup inf II x - Y Ii , (Ll)
M n xEB YEMN

where the infimum is taken over all N-dimensional affine varieties M N in
X (cf. [8]). The concept of N-width was introduced by Kolmogorov [7];
its idea may be viewed as that of finding an extremal N-dimensional subspace
of X which globally approximates the set B. For a Hilbert space X,
Kolmogorov [7] and Jerome [5, 6] studied the N-widths of ellipsoids defined
by differential operators.

Let L be the differential operator

r

L = f1 (D - bj),
j=1

with real constants b1 , ... , br , where D = dl(df); and let

B(L) = {x EO Wr,c.o[ -1, 1]: II Lx I!c.o :"( I}

(1.2)

(1.5)

where, as usual, wr ,,,, [ -1, 1] denotes the Sobolev space of functions which
are r-fold integrals of Lc.o[ -1, 1] functions. In this paper we will derive exact
expressions for the N-widths of the sets B(L) in X = C[-l, 1], as well as
exhibit an extremal subspace.

Solutions to the width problem are a consequence of the following non
linear approximation problem, which is independently of some interest.
Let Sen, L) be a set of exponential splines relative to the differential operator L
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defined explicitly in (2.1) of the next section, and let V be some function
satisfying (DL) v(t) = o(t -- I). Our approximation problem is

inf l' -- .\
xeS(n,L)

y(n. L). (1.4)

The main result of this paper is that drv(B(L» y(N- 1', L) when
Il;~l bi = O. In [10], Tihomirov considered the special case L = D'r, with
a more restrictive nonlinear approximation problem than (1.4).

2. THE MINIMIZATION PROBLEM

]n this section we pose and solve a nonlinear best approximation problem
in C[ - I, I]. The solution to this problem will be instrumental in solving
the width problem as mentioned in the introduction. For r cc L 2..... set

'(-1 HI

x(t) = L f3i ti - L iX;(t- t,Y .
i",,,,Q i=-cl

t", < I, (2.1)

and let 5(n, 1') be the collection of all splines x of the form (2.1) with m < n
and (Xi = ±(2/r!). The t/s will be called the knots of the spline function x.
The best approximation problem is then

inf il((t + I)"/r!) - x(ty
XES(n,r)

(2.2)

The solutions to this problem can be viewed as generalizations of the
Chebyschev polynomials. ]n [10], Tihomirov considered a similar problem
with the important exception that the (X/s were required to alternate in sign.
However, as we will show, this alternation is built into the solution to (2.2).
We will establish the following

THEOREM 2.1. There is a solution x * to (2.2) which has exactly n knots
and the curve o[the error function xnr(t) = ((t -I- 1)"/r!) - x*(t) has n -I- I' +- 1
alternation. Furthermore, the (X/s alternate in sign and II Drxnr = 1.

We will give the entire proof of this theorem so that the method can be
used for generalization to a larger class of operators in the next section. To
prove Theorem 2.1 we will first establish five lemmas.

LEMMA 2.1. The problem (2.2) has a solution in 5(n, r).

The proof of this lemma follows from a standard compactness argument.
The lemma to follow guarantees that there is a solution x* with exactly n
knots in (-1,1).



SPLINES RELATED TO N-WIDTHS 423

LEMMA 2.2. There is a solution x* in Sen, r) to problem (2.2) which has
precisely n distinct knots in the open interval ( -1, 1).

Prool Let x * solve (2.2). Without loss of generality, we may assume that
all the m (m ~ n) knots of x* lie in (-1, 1). Let yet) = ((t + l)"/r!) - x*(t).

If m < n, then we may add to x* the sum L~~m+l CXj(t - tj)~, where: for allj,
CXj = (2/r!) sgn y(l) if y(l) oF ° and CXj = 2/r! if y(l) = 0, and the t;'s,
tm+l < ... < tn < 1, are so close to 1 that the value II y ii is not increased.

We now derive a fundamental approximation theoretic result which links
xnr(t) = ((t + 1)'/r!) - x*(t) to an (n + r)-dimensional spline subspace of
C[ -1, 1]. Let M be the subspace generated by {I, t, ... , t r -\ (t - t1):-\ ... ,
(t - t n):-l} where {t1 ,... , tn } are the knots of a solution x* to (2.2) as given
by Lemma 2.2. We may now state

LEMMA 2.3. Let x nr ' r ?;; 2, be the error (t + I)"/r!) - x*(t) where x*
is a solution of (2.2) with n distinct knots t1 ,... , t n • Then the zero function e
is a best approximant to X nr from M.

Proof Following the ideas in [10] we let G: RnF ---->- C[ -1, 1] be defined
by

r-1. n r (t + 1)'
G(y) = - L Yi t ' - L cx;(t - Yi-'-I-1)+ + , (2.3)

i=O i~l r.

where I' = (Yo ,... , YnF-1)' We suppose that the cx;'s are chosen so that
G(y*) ~= xnr • It is easy to see that G is Frechet differentiable at 1'* and
further that

r-1 -n

G'( *)( ) - " i I ." (* ),.-1I' YJ -- - L. YJi t TIL. CXiYJi+,.-l t - Yi c-" -I -- •
i~O i~l

(2.4)

where YJ = (YJo ,... , YJr+n-1)' Since II G(y)li has a global minimum at I' = 1'*
we conclude that

G(y*) + G'(Y*)(YJ)\I ?;; \1 G(y*)I!, (2.5)

for all YJ E: RnF. Since G'(y*)(Rn+r) = M, we conclude that e is a best
approximation to X nr == G(y*) from M.

The next lemma is a standard result in approximation theory. For example
see Singer [9].

LEMMA 2.4. There exist p (p ~ n + r + 1) points 7 1 , ... , 7 v with
-1 ~ 7 1 < ... < 7 l' ~ 1, p nonzero real numbers (L1 ,... , (Lv , and a functional
F of the form

v
F = I (LiO(t - 7i)

i=l

(2.6)
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in C*[-I, I], satisfying (a) IIFII = I, (b) FEM.l, and (c) F(xnr) = IIXnr

Here, 8(t ~ T;) represents the purely atomic measure with weight one at T; •

Next we consider the function f defined by

(2.7)

where p, the JL;'S and the T;'S are as in Lemma 2.4. Clearly, f vanishes on
(~ro, -1] andfis in cr-2(Rl). It is easy to see (cf. [10D thatfalso vanishes
on [1, 00). Indeed, for t )c 1, we may remove the plus subscript in (2.7),
expand the binomial terms, and collect the result in powers of t, obtaining

(2.8)

and observe that since F annihilates polynomials of degree no greater than
r - 1, the last sum in (2.8) is zero.

We now state the final lemma.

LEMMA 2.S. The number of knots of the spline function f in (2.7) is
p=n+r+1.

The above lemma was proved in [10]. However, we feel that the exposition
there was somewhat unsatisfactory and for that reason we include a proof.
Let I = [a, b] be the smallest nontrivial interval to the left of I so that

j(j)(a-) = j(jl(b+) = 0, j = 0, I, ... , r ~ 1. (2.9)

We wish to show that I = [-I, I]. Suppose this is not the case. Then noting
that

Drf= F,

we have, for any y E M, by Lemma 2.4,

(2.10)

0= F(y) = rDrJ(r) yet) dt = (-I)'rJ(t) Dry(t) dt. (2.11)
-1 -1

Here, if necessary, the integral can be taken in a natural way over
[~I - E, I + E] for small positive E. In particular, takingy(t) = (t - t;):-1
we obtainJ(ti ) = 0, for i = 1, ... , n. Suppose there are exactly q t;'s in (a, b).
Then f has at least q isolated zeros there. Using Rolle's theorem r- 2
times and recalling that f as well as the first r - 2 derivatives off vanish at
a and b, we conclude that j<r-2) has at least q + r _.. 2 isolated zeros in
(a, b). Hence, for all small 8 > 0, f has at least q + r .+- I knots in
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[a - 8, b + 8]. Since at each knot of J, I x 1lT ! attains a global maximum
from (a) and (c) of Lemma 2.4, we know that X nr has at least q + r maxima
and/or minima in the interior of [-1, 1]. Of course, if neither a = -1
nor b = 1 then X 1lr would have q + r + 1 maxima and/or minima in the
interior of [-1, 1]. We will assume that a > -1 andb = 1. The cases where
- I < a < b < 1 and -1 = a < b < 1 can be treated similarly. It follows
that x:;,! must have at least q + r zeros in [a - 8, b) for all small 8 > O.
In fact, from the definition ofS(n, r) it can easily be seen that I x~;,!(t)i ~" 1 and
hence X~I,! must change sign at the q + r interior maxima and/or minima
in [a - 8, b). Using Rolle's theorem r - 1 times we can conclude that
x~;r-I) has at least q + 2 sign changes in [a - 8, b) for any 8 > O. In particular,
since x~r-I) is piecewise linear we can conclude that X nr must have at least
q + 1 knots in (a, b). But this is contrary to our assumption that there are
exactly q knots of X 1lr in (a, b). It must therefore be the case that a = -1
and b = 1. Now by exactly the same argument as above we conclude thatf
has n isolated zeros in (-1, 1) and thus f has n + r + 1 knots in [-1, 1].

We are now in a position to prove Theorem 2.1. Lemma 2.1 and Lemma 2.2
guarantee that there is a solution X* to (2.2) with exactly n knots. From the
proof of Lemma 2.5 it is easy to see that X 1lr alternates sign at least n + r + 1
times. Since X nr has only n knots, it can alternate no more than n -+ r + 1
times. The only way X nr can alternate n + r + 1 times is for the (X/s to
alternate in sign with (Xi = (-I)i+1(2/r!) for i = 1, ... ,n. Since the (X/s
have this structure it is easy to see that 11 Drxnr lice = I.

3. THE GENERALIZED MINIMIZATION PROBLEM

In this section, problem (2.2) is reformulated in a more general setting with
the differential operator Dr replaced by

r

L = TI (D - bj),
j~1

(3. I)

where bi , ... , b r are real numbers. Throughout this section, we will assume
that bi = O. When all the b/s are nonzero, the first four lemmas in this section
are still valid. In Section 4, we will indicate how the case when all the bi's
are nonzero can be treated.

Consider the set of functions x of the form

rJ1. r

x(t) = L (XiV(t - ti) + L {3i'rl'i(t),
i=l i=l

(3.2)
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with -1 ::;; t1 < '" < tm 1, where {WI ,... , WI'} is a basis of the nullspace
of the operator L and where v E wr.",[ -1, 1], vet) CC2 °for t < 0, and

Lv(t) =, (1)0, . (3.3)

We let Sen, L) denote the set offunctions x of the form (3.2) with m ~ nand
Cif = ±2. The best approximation problem then becomes

infi 1'(t + I) - x(t)! .
xES(n,L)

The theorem corresponding to Theorem 2.1 is

(3.4)

THEOREM 3.1. There is a solution x* to (3.4) which has exactly n knots
and the curve of the error function x,,(L)(t) ~::c 1'(t + 1) - x *(1) has n + r + 1
alternation. Furthermore, the lX;'S alternate in sign and Lxn(L)ilx = 1.

The proof of this theorem follows quite closely the proof of Theorem 2.1.
We note that operators of the form (3.1) satisfy a generalized Rolle's theorem
as indicated in the following proposition which is proved in [4].

PROPOSITION. Let YEC r [-I, 1] with j r sign changes, then Ly has
j - r sign changes.

Since Rolle's Theorem was used as a major tool in proving Theorem 2.1,
it is easy to see the corresponding uses of the above proposition. We list
the lemmas which are necessary for the proof of Theorem 3.1 and comment
on the modifications needed to adapt the proofs of the corresponding lemmas
in Section 2.

LEMMA 3.1. The problem (3.4) has a solution in Sen, L).

LEMMA 3.2. There is a solution x* in Sen, L) to problem (3.4) which has
precisely n distinct knots in (-I, I).

The proof of this lemma just relies on the fact that the Ci;'S may be chosen
to be either 1 or-l and hence we may place knots very close to 1 without
increasing the norm of the error.

Let M =, M(L, n) be the subspace generated by {11\ , ... , li',. , v(1)(t - tI), ... ,

v(1)(t - t n )} where {WI ,... ,W,} is a basis for the null-space of the operator L
and t l , .... til are the knots of a solution Xo< to problem (3.4). Then we have
the following approximation result.

LEMMA 3.3. Let x,,(L) be the error 1'(1 1)-- x*(1) where x * is a solution
of problem (3.4) with n distinct knots tl , ... , tn' Then e is a best approximant
to xn(L)from M.
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This lemma follows from examining the Frechet derivative of the function
G, G: R"rr -+ C[ ~l, I], defined by

r "
G(y) = vet) - L YiH'i - I CXiV(t - YiH)'

i=l i~l

where Y = (Y1 ,.,', Y"H)' It is easy to see that if G(y*) = x,,(L) then
G'(y*)(R"H) = M.

LEMMA 3.4. There are p :s;; n + r + 1 points -I ~ T1 < T2 < ... <
T l' ~ 1, p nonzero numbers I-ti , and a functional F of the form

l'

F = I l-tiO(t - T i)
i~l

in C*[-I, 1], satisfving

(a) \1 FII = I,

(b) FE M\ and

(c) F(x,,(L» = II x,,(L)II·

(3.5)

We now let L * be the formal adjoint of L, and let v* E W r - 1 ·(X'[_3, 3]
with v*(t) = 0 for t ~ 0 satisfying

Then we define

L *v*(t) = o(t).

l'

f(t) = L l-tiV*(t - Ti)'
i~l

(3.6)

(3.7)

Clearly, L *f ~"" F and f(t) = 0 for t E (-2, -I]. If the numbers hI'"'' br

are distinct then

and hence for t ~ I

}'

v*(t) = L c;e- bjt
;~l

(3.8)

p r r p

f(t) = I I-ti I c;e-bj(t-Ti) = I c;e-bjt I l-tiebjTi . (3.9)
i=l ;~1 ;=1 i~l

The last sum in (3.9) is identically zero since ebjl is in the nullspac:e of L.
In general, when the b;'s are not necessarily distinct, we can also conclude
as above, using the binomial expansion and regrouping, that f(t) ,= 0 for
t(=[1,2).
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We may now state the final lemma that we need for the proof of
Theorem 3.1.

LEMMA 3.5. The number of knots of the exponential spline function f in
(3.7) is p = n -+- r + 1.

The proof of this lemma proceeds similarly to the proof of Lemma 2.5.
For instance, as in (2.11), we have for y E M

1 flo= F(y) = f L*j(t) y(t) dt = ± jet) Ly(t) dt.
-1 -1

(3.10)

Choosing y(t) = v(1)(t - ti)' then Ly(t) = 8(t - ti) and hence, j(t,) = 0
for i = 1,... , n. Now, by using the generalized Rolle's theorem, Lemma 3.5
follows. Also, Theorem 3.1 now follows by arguments similar to those used
in proving Theorem 2.1.

We now consider the case when all the b/s are nonzero. The only problem
we encounter is in the proof of Lemma 3.5. In that lemma, we note that
I Lx,,(L)(t) I ~ 1 implies that x,,(L) cannot be constant on a nontrivial
subinterval. This is no longer the case when TI;~1 bj =F O. However, at that
stage of the proof we are only interested in whether I x,,(L)1 is constantly
equal to II x,,(L)II, on a subinterval J, say. If this is the case, we have

i L(x,,(L))(t) I = I :fI bj III x,,(L)I' ,
)~l

(4.3)

for t E J. But II x,,(L)II->- 0 as n ->- 00. Hence, there is an integer no such that
for all n ~ no, I TI;=I bj I II x,,(L)11 is less than one. This means that for
n ~ no, x,,(L) cannot be constant when I x,,(L) I attains its maximum. Thus,
for n ~ no Lemma 3.5 is also valid for TI;~1 bj =F O.

4. N-WIDTHS OF B(L)

Let L = TI;~1 (D - bj), where b1 , ... , b r are real numbers and bI =~ O.
The case when all the b/s are nonzero will be discussed at the end of this
section. Let B(L) be as in (1.2), and let M(L, n) be the subspace of C[ -1, 1]
and xN_r(L) be the error in the solution of problem (3.4) as defined III

Section 3. We have the following result on the N-widths of B(L).

THEOREM 4.1. For N ~ r - 1, dN(B(L)) = 00, and for N ~ r,
dN(B(L)) = II xN_r(L)II·
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This theorem follows directly by applying the generalized Rolle's theorem
in the proof of Theorem 2 in [10]. In the course of the proof it can be seen
that the subspace M(L, N - r), for N?: r, is an extremal approximating
N-dimensional subspace of C[-I, I] in the sense of N-width (cf. [8]); that is,
we have the following corollary.

COROLLARY. For N ?: r,

dN(B(L)) = sup inf il x - y II .
XEB(L) YEM(L,N-r)

(4.1)

We wish to point out that M(L, N - r) is an exponential spline subspace,
and further that there is a linear projection P mapping C[-I, I] onto
M(L, N - r) so that

sup II x - Px II = dN(B(L)).
XEB(L)

(4.2)

In fact, the projection P is defined by interpolation at the N zeros of X N-r(L).
When n;~1 bj =Ie 0, we have the following theorem.

THEOREM 4.2. Let

r

L = TI (D - b j ),

j~1

where bl , ... , br are arbitrary real numbers. Then there is a positive integer
no such that dN(B(L)) = II xN_r(L)llfor all N ?: 110 ,

5. FINAL REMARKS

There are many interesting, and perhaps quite important, questions yet
to be answered concerning these problems. The first natural question is
whether the results in this paper are still true when the operator L is p(D)
where p is a polynomial with real constant coefficients and nonreal roots.
If the coefficients of the polynomial p are functions, the minimization and
width problems for L = p(D) seem to be quite complicated but important.
More generally, for which linear operators L will Theorem 4.1 remain valid?
From a solution X* to problem (3.4), we can construct the extremal subspace
M(L,I1). However, we cannot compute X* in a closed form. It would be
of interest to know precisely the location of the knots of X* and to know
whether x * is unique or not. It is also of interest to know the precise rate
of decrease of dN(B(L)) as N --+ 00. Since there has been much recent interest
in nonlinear approximation, the exact (or exact asymptotic) distances in
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(1.4) can possibly be calculated yielding the rate of decrease of the N-widths.
In this area, Braess [1,2,3] has studied nonlinear approximation problems
with restrictions on the coefficients.
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